$$\left(\frac{\partial P}{\partial V}\right)_{S} = \frac{dP_{S}}{dV}, \quad \left(\frac{\partial P}{\partial V}\right)_{H} = \frac{dP_{H}}{dV}$$

$$\left(\frac{\partial E}{\partial V}\right)_{H} = \frac{dE_{H}}{dV}, \quad \left(\frac{\partial E}{\partial V}\right)_{S} = \frac{dE_{S}}{dV} = -P_{S}.$$
(36)

Equation (35) then simplifies to

$$\frac{dP_S}{dV} + kP_S = \frac{d}{dV} (P_H - kE_H) . \tag{37}$$

The pressure and energy on the Hugoniot are expressed as

$$P_{H} = \frac{C^{2} \alpha}{(V_{0} - M\alpha)^{2}}$$

$$E_{H} = P_{H} \alpha / 2$$

when $a = V_0$ -V is substituted into Eqs. (6) and (32). Substitution of derivatives of P_H and E_H with respect to ainto Eq. (37) yields

$$\frac{dP_{S}}{da} - kP_{S} = \frac{C^{2}}{(V_{0} - Ma)^{3}} [V_{0} + \alpha (M - kV_{0})].$$
 (38)

This first order differential equation can be solved using the integrating factor $\exp(\int kda)$. Hence,

$$P_{S} = Ae^{k\alpha} + e^{k\alpha} \int e^{-k\alpha} C^{2} \left[\frac{V_{0} + \alpha (M - kV_{0})}{(V_{0} - M\alpha)^{3}} \right] d\alpha$$
 (39)

where A is a constant of integration. The integral term can be performed in a never ending series of integrations by parts, but an easier method using information gained from integrating by parts is to assume a series solution of the form

$$P_{S} = Ae^{k\alpha} + \frac{C^{2}}{(V_{0}-M\alpha)^{2}} \sum_{i=0}^{\infty} A_{i}\alpha^{i}$$
 (40)

The A_i's must be chosen such that Eq. (38) is satisfied for all powers of a. The recursion relation for the A_i's which satisfies this requirement is